学界| 用量子计算辅助深度学习:研究者提出量子辅助Helmholtz机

机器之心 2017-09-12 11:48 阅读:74
摘要:选自arXiv作者:MarcelloBenedetti等机器之心编译参与:Panda人工智能和量子计算毫无疑问是当前计算领域大变革中两大最有发展潜力的技术,相关研究者也一直在努力将这两种技术结合到一起

选自arXiv

作者:MarcelloBenedetti等

机器之心编译

参与:Panda



人工智能和量子计算毫无疑问是当前计算领域大变革中两大最有发展潜力的技术,相关研究者也一直在努力将这两种技术结合到一起,比如《深度 | MIT 量子专家 Seth Lloyd:量子计算更擅长机器学习,发现传统计算无法发现的数据模式》。近日,来自美国 NASA 阿姆斯研究中心量子人工智能实验室、美国大学空间研究协会(USRA)高级计算机科学研究所(RIACS)、英国伦敦大学学院计算机科学系、美国 SGT Inc. 和哥伦比亚卡塔赫纳大学应用数学研究所的研究者提出了一种量子辅助深度学习框架:量子辅助 Helmholtz 机。机器之心对该研究进行了摘要介绍。



论文:量子辅助 Helmholtz 机:一种用于近期设备中产业数据集的量子经典深度学习框架(Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices)







论文链接: https://arxiv.org/pdf/1708.09784v1.pdf



鉴于机器学习的高商业价值和广泛的应用能力,它也被认为是近期量子技术的关键应用之一。在这项工作中,我们介绍了量子辅助 Helmholtz 机:一种混合的量子经典框架,它有望具有处理连续变量上高维度真实世界机器学习数据集的能力。和之前的方法仅仅使用量子计算机来辅助深度学习不同,我们使用深度学习来提取数据的低维二元表征,这很适合可以辅助无监督生成模型的训练的相对较小的量子处理器。为了在真实数据集上演示这个概念,我们使用了 1644 个量子比特构成的有噪声非容错量子设备 D-Wave 2000Q 来辅助在 MNIST 手写数字数据集的一个带有 16×16 连续值像素的下采样版本上的训练。尽管我们是在一个量子退火设备上演示这个概念的,但也可以使用这个灵活的框架探索离子阱技术或超导门模型架构(superconducting gate-model architecture)等其它量子平台。





图 1:量子辅助机器学习(QAML)的架构。(a) 量子辅助 Helmholtz 机(QAHM);(b) 量子辅助深度信念网络(QADBN);(c) 量子辅助深度玻尔兹曼机(QADBM)。在第 2 节中可以看到对本图中的架构的简要描述。





算法 1:在量子退火设备上的用于量子辅助 Helmholtz 机的 wake-sleep 算法









本文为机器之心编译, 转载请联系本公众号获得授权

✄------------------------------------------------

加入机器之心(全职记者/实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告&商务合作:bd@jiqizhixin.com

版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。
阅读量: 74
0